国产主播欧美精品,在线视频cao,中文字幕免费一区二区,日韩三级影视

    預存
    Document
    當前位置:文庫百科 ? 文章詳情
    「綜述」TiO2在光催化CO2還原中的應用知多少?(下)
    來源:本站 時間:2019-12-28 00:36:44 瀏覽:7760次

    【提高光催CO2還原性能的方法】

    在前期的介紹中,我們了解到光催化反應主要使用摻雜金屬沉積堿性修飾形成異質結以及碳基材料的負載五種方法提高TiO2材料的性能。

    摻雜

    TiO2的禁帶寬度較大(3.2eV),因此必須使用紫外光進行照射才能進行光催化反應。實際上,太陽光中只有大約5%為紫外光,這就造成了太陽能的極大浪費,所以如何提高其在可見光范圍內的吸收十分必要。摻雜是一種應用十分廣泛的拓展半導體材料吸收光譜范圍的方法。通過金屬元素的摻雜,可以在TiO2的導帶下產生一空的能態,新能級的引入可以提高材料對全光譜的利用效率。但是,過多雜質的引入會導致大量的缺陷密度,這對于反應的進行極為不利。此外,金屬摻雜所造成的光腐蝕也會影響材料的長期穩定性能。而I、N、S和C元素的摻雜較好地緩解了這一問題。

    金屬沉積

    眾所周知,TiO2在紫外光照射時進行的光催化反應中由于電子-空穴的快速復合使得CO2還原的反應效率很低。而通過金屬在材料表面的沉積可以有效阻止光生電子-空穴的復合,從而提高其催化性能。一般來說,金屬納米顆粒的費米能級低于TiO2的導帶,這就會在金屬和TiO2的界面間產生肖特基勢壘。在光照的條件下,光生電子會通過肖特基勢壘快速轉移至金屬表面,直到二者的費米能級相等為止。與此同時,光生空穴則留在TiO2內部。這就使光生電子和空穴得到了有效分離。此外,金屬的功函數在電子-空穴的分離效率提升方面也有巨大影響,功函數高的金屬接受電子的能力也隨之提高,這也進一步增強了電子-空穴對的分離。

    圖1 金屬沉積的增強性能機理

    堿性修飾

    除了加強光生電子-空穴的分離效率外,提高材料對于CO2的吸附能力也是增強光催化性能的重要思路。由于CO2為酸性氧化物,因此通過堿性吸附劑增強CO2的化學吸附也就順理成章。將堿性吸附劑沉積在TiO2表面或者對TiO2進行堿性化處理應該能夠大幅提高CO2的吸附。此外,堿性吸附劑上的活性基團也可以參與到CO2的光催化還原反應中來,在反應過程中產生的中間產物也有效地促進了還原反應的進行。堿性化處理的材料不僅吸附CO2能力得到了提高,更能夠活化CO2分子,增強材料的反應性能。

    形成異質結

    在提高材料性能的研究中,形成異質結是其中最為常用的方法之一,對于半導體材料來說更是如此。這不僅會促進電子-空穴的有效分離,同時也分離了氧化和還原的反應位,促進了反應的發生。

    圖2 形成異質結

    負載碳基材料

    金屬材料的摻雜和沉積可以有效提高CO2還原反應的效率,但是,金屬元素通常比較稀有,價格昂貴,而碳基材料來源廣泛,電導率高,表面積大而且表面特性可控,此外,碳基材料抗腐蝕,這對于材料的長期穩定性也起到了重要作用。因此,利用碳基材料(例如石墨烯、碳納米管等)替代金屬沉積在材料表面成為了今年來熱點的研究方向

    【總結】

    當前的研究者們付出了巨大的努力提高材料的性能,并取得了相當可喜的成果,為未來該領域的研究指明了方向,提供了思路。但是,我們也應該看到,當前的研究還存在諸如具體的反應機理仍然不清楚、材料對于光能的利用效率偏低、材料的長期穩定性不足以及反應產物的可控合成性差等問題,這些目前存在的問題同時也是日后研究的主要方向,突破了這些CO2還原反應中的桎梏后,相信人類能在可持續發展的路上越走越遠,越走越寬。

    本文內容主要基于Applied Surface Science 392 (2017) 658–686,文末會列出相關的文獻,感興趣的讀者可以自行下載查看。

    【參考文獻】

    1.JingxiangLow, Bei Cheng, Jiaguo Yu, Surface modification and enhanced photocatalytic COreduction performance of TiO2: a review, Applied Surface Science 392 (2017) 658–686.

    2.Slamet,H.W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of COon copper-doped titania catalysts prepared byimproved-impregnation method, Catal. Commun. 6 (2005) 313–319.

    3.Y.Liu, S. Zhou, J. Li, Y. Wang, G. Jiang, Z. Zhao, B. Liu, X. Gong, A.Duan, J. Liu, Photocatalytic reduction of COwith water vapor on surface La-modified TiOnanoparticles with enhanced CHselectivity, Appl. Catal. B 168 (2015)125–131.

    4.X.Feng, J.D. Sloppy, T.J. LaTempa, M. Paulose, S. Komarneni, N. Bao,C.A.Grimes, Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiOnanotube arrays: application to the photocatalytic reduction of carbon dioxide, J. Mater. Chem. 21 (2011) 13429–13433.

    5.W.-N.Wang, W.-J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki,S.Gangopadhyay, P. Biswas, Size and structure matter: enhanced CO2photoreduction efficiency by size-resolved ultrafine Pt nanoparticleson TiO2single crystals, J. Am. Chem. Soc. 134 (2012) 11276–11281.

    6.X.Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye,Photocatalytic CO2conversion over alkali modified TiO2without loading noble metal cocatalyst, Chem. Commun. 50 (2014)11517–11519.

    7.L.Liu, C. Zhao, H. Zhao, D. Pitts, Y. Li, Porous microspheres of MgO-patched TiOfor COphotoreduction with H2O vapor: temperature-dependent activity and stability, Chem. Commun. 49(2013) 3664–3666.

    8.H.Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang,Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev. 43 (2014) 5234–5244.

    9.S.J.Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-lightdriven heterojunction photocatalysts for water splitting-a criticalreview, Energy Environ. Sci. 8 (2015) 731–759.

    10.M.M.Gui, S.P. Chai, B.Q. Xu, A.R. Mohamed, Enhanced visible light responsive MWCNT/TiOcore-shell nanocomposites as the potential photocatalyst for reduction of COinto methane, Sol. Energy Mater. Sol. Cells 122 (2014) 183–189.

    11.L.-L.Tan, W.-J. Ong, S.-P. Chai, B.T. Goh, A.R. Mohamed,Visible-light-active oxygen-rich TiOdecorated 2D graphene oxide with enhanced photocatalytic activitytoward carbon dioxide reduction, Appl. Catal. B 179(2015) 160–170

    測試狗·科研服務(m.muy0.com)可做XPS、TEM、FIB、SIMS、SQUID、AFM等常規測試;同步輻射可開展XAFS(XANES,EXAFS)等實驗;球差電鏡現場測試原子相STEM-HAADF、EELS-Mapping等;礦物解離分析儀MLA,同位素等地質方向測試;DFT第一性原理MD分子模擬等計算模擬;還有原位拉伸/變溫SEM變溫XPS原位實驗。服務的成果已在JACS,AM,NC,Materials Today等頂刊發表。測試狗期待與你一起努力,讓科研不留遺憾~


    聲明:本文版權屬于測試狗,投稿轉載請聯系GO三思(kf01@ceshigo.com),如需轉載請注明出處,并附有原文鏈接,謝謝!

    評論 / 文明上網理性發言
    12條評論
    全部評論 / 我的評論
    最熱 /  最新
    全部 3小時前 四川
    文字是人類用符號記錄表達信息以傳之久遠的方式和工具。現代文字大多是記錄語言的工具。人類往往先有口頭的語言后產生書面文字,很多小語種,有語言但沒有文字。文字的不同體現了國家和民族的書面表達的方式和思維不同。文字使人類進入有歷史記錄的文明社會。
    點贊12
    回復
    全部
    查看更多評論
    相關文章

    基礎理論丨一文了解XPS(概念、定性定量分析、分析方法、譜線結構)

    2020-05-03

    晶體結構可視化軟件 VESTA使用教程(下篇)

    2021-01-22

    手把手教你用ChemDraw 畫化學結構式:基礎篇

    2021-06-19

    【科研干貨】電化學表征:循環伏安法詳解(上)

    2019-10-25

    【科研干貨】電化學表征:循環伏安法詳解(下)

    2019-10-25

    Zeta電位的基本理論、測試方法和應用

    2020-08-24

    項目推薦/Project
    第一性原理-CO2RR

    第一性原理-CO2RR

    光催化二氧化碳還原

    光催化二氧化碳還原

    熱門文章/popular

    基礎理論丨一文了解XPS(概念、定性定量分析、分析方法、譜線結構)

    晶體結構可視化軟件 VESTA使用教程(下篇)

    手把手教你用ChemDraw 畫化學結構式:基礎篇

    【科研干貨】電化學表征:循環伏安法詳解(上)

    【科研干貨】電化學表征:循環伏安法詳解(下)

    電化學實驗基礎之電化學工作站篇 (二)三電極和兩電極體系的搭建 和測試

    微信掃碼分享文章
    主站蜘蛛池模板: 秀山| 米泉市| 三河市| 福贡县| 灯塔市| 鲜城| 富源县| 丰镇市| 南阳市| 金阳县| 建瓯市| 东宁县| 荆门市| 孟津县| 香港 | 阳原县| 法库县| 清原| 宜春市| 阿合奇县| 苗栗市| 周至县| 亳州市| 会同县| 剑阁县| 德惠市| 镇赉县| 新巴尔虎左旗| 江达县| 韶关市| 六盘水市| 博野县| 新化县| 诸暨市| 滨州市| 碌曲县| 敦化市| 星座| 沭阳县| 壶关县| 东乌珠穆沁旗|